Andy Klise＇s Orient Last Layer Guide

For Credits Please See http：／／www．kungfoomanchu．com
Y Green $=R \cup R^{\prime} U^{\prime}$ Family，Blue $=R \cup R^{\prime} U R U^{2} R^{\prime}$ Family，Orange $=R F^{\prime} R^{\prime} F$ Family
$m=$ mirror，$R=$ reverse rotation，$\sim=$ minimal difference，$* *=$ this algorithm may be faster
Try to recognize each pattern by viewing the fewest number of faces

All Edges Oriented Correctly

（ $R^{\prime} \mathbf{U}^{\prime} R \mathbf{U}^{\prime} \mathbf{R}^{\prime} \mathbf{U}^{2} R$ ）
$\mathrm{y}\left(\mathrm{R} U^{2} \mathrm{R}^{\prime} U^{\prime} R U^{\prime} R^{\prime}\right)$
OCLL $6-\mathbf{2 6}$－Probability＝ $1 / 54$
（R U R＇U）（R U＇R＇U）（R U $\left.\mathbf{U}^{2} \mathbf{R}^{\prime}\right)$ $\left(R^{\prime} U^{\prime} R U^{\prime}\right)\left(R^{\prime} \cup R U^{\prime}\right)\left(R^{\prime} U^{2} R\right)$
$y\left(R U^{2} R^{\prime}\right)\left(U^{\prime} R \cup R^{\prime}\right)\left(U^{\prime} R U^{\prime} R^{\prime}\right)$ ocLL1 $-21-$ Probability $=1 / 108$ $\mathbf{x}\left(R^{\prime} U^{\prime}\right)(L \mathbf{L})\left(R U^{\prime} L^{\prime} \mathbf{U}\right)$

$\mathbf{R}^{2} \mathbf{D}\left(\mathbf{R}^{\prime} \mathbf{U}^{2} \mathbf{R}\right) \mathbf{D}^{\prime}\left(\mathbf{R}^{\prime} \mathbf{U}^{2} \mathbf{R}^{\prime}\right)$
$y^{2} R^{2} D^{\prime}\left(R U^{2} R^{\prime}\right) D\left(R U^{2} R\right)$
Corners Correct，Edges Flipped

（M U M＇）U＇$($ M U M＇）
E1－28 - Probability $=1 / 54$
（R U R＇U＇）M＇（UR U＇r＇）

E2－57－Probability $=1 / 108$

P－Shapes

W－Shapes

Squares

（r U ${ }^{2} \mathbf{R}^{\prime} \mathbf{U ' R}^{\prime} \mathrm{U}^{\prime} \mathrm{r}^{\prime}$ ）

L Shapes

 L1 $-\mathbf{4 7}$－Probability $=1 / 54$
$m \quad\left(R^{\prime} F\right)\left(R^{2} B^{\prime}\right) R^{21}\left(F^{\prime} R^{2}\right)\left(B R^{\prime}\right)$
L4－50－Probability $=1 / 54$

L6－54－Probability $=1 / 54$

＝2－10－P
F（RU＇）（R＇U＇R U）R＇ \mathbf{F}^{\prime}

F4－37－Probability $=1 / 54$

Fish Shapes

Awkward Shapes

FR＇FR $\mathbf{R}^{\mathbf{2}} \mathbf{U}^{\prime}\left(\mathbf{R}^{\prime} \mathbf{U '}^{\prime} \mathbf{R} \mathbf{U}\right) \mathbf{R}^{\prime} \mathbf{F}^{\mathbf{2}}$ $F \cup\left(R U^{\prime}\right) x^{\prime}\left(R^{\prime}\right) D^{\prime}\left(R U U^{\prime} R^{\prime}\right) x$
$y^{2}\left(R^{2} \cup R^{\prime}\right) B^{\prime}\left(R U^{\prime} R^{2} U\right)\left(R B R^{\prime}\right)$ $A^{2}-\mathbf{3 0}-$ Probability $=1 / 54$
（R＇U＇R U＇R＇ \mathbf{U}^{2} R）F（R U R＇U＇）F （ $\left.R^{\prime} U^{2} R \cup R^{\prime} \cup R^{2}\right) y\left(R \cup R^{\prime} U^{\prime}\right) F^{\prime}$
A4－42－Proabaility $=1 / 54$

Lightning Bolts

T－Shapes

C－Shapes

I Shapes

Knight Move Shapes

No Edges Flipped Correctly

		$\left(R U^{2}\right)\left(R^{21} F R F^{\prime}\right) U^{2}\left(R^{\prime} F R F^{\prime}\right)$01-1 - Probability = 1/108
		f（RUR＇U＇）f＇U＇ $\mathbf{F}\left(\mathbf{R O R}^{\prime} \mathbf{U}^{\prime}\right) \mathbf{F}$ $y^{2} F\left(U R U^{\prime} R^{\prime}\right) F^{\prime} R y\left(R \cup R^{\prime} U^{\prime}\right) F^{\prime} y^{\prime}$
		03－3－Probability＝ $1 / 54$
		$\begin{aligned} & \left(\mathbf{r} \mathbf{U R} \mathbf{R} \mathbf{R} \mathbf{U}^{2}\left(\mathbf{r}^{2}\right) \mathbf{U ' R}^{\prime} \mathbf{R} \mathbf{U}^{\prime} \mathbf{U}^{2} \mathbf{r}\right) \\ & \mathrm{y}^{2} F\left(R \cup R^{\prime} U\right)^{\prime} y^{\prime} U^{2}\left(R^{\prime} F R F^{\prime}\right) \end{aligned}$
		O6－18－Probability＝ $1 / 54$
		$\begin{aligned} & \text { (RUR'U)(R'FR F') } \mathbf{U}^{2}\left(R^{\prime}\right. \text { F R F') } \\ & \text { O5-17- Probability }=1 / 54 \end{aligned}$

（ $\mathbf{r}^{\prime} \mathbf{U '}^{\prime}$ R U＇R＇ $\mathbf{U}^{\mathbf{2}} \mathbf{r}$ ）
B2－8 - Probability $=1 / 54$
$r^{\prime} U^{\prime} R U^{\prime} \mathbf{x}^{\prime}\left(R U^{\prime} R^{\prime} U\right) \times R^{\prime} U^{2} r$ $y^{\prime} F\left(R \cup R^{\prime} U^{\prime}\right) F^{\prime} \cup F\left(R U R^{\prime} U^{\prime}\right) F^{\prime} * *$
$y^{2}\left(r R^{2} U^{\prime} R U^{\prime}\right)\left(R^{\prime} U^{2}\right)\left(R U U^{\prime} R r^{\prime}\right)$
B4－12－Probability $=1 / 54$
（ $\left.\mathbf{R}^{\prime} F\right)\left(R U R^{\prime} U^{\prime}\right) F^{\prime} \mathbf{U R}$
B6 $-\mathbf{4 0}-$ Probability $=1 / 54$

F（R U R＇U＇）F＇
T2－45－Probability $=1 / 54$

R＇U＇（R＇FRF＇）UR
（RU）$x^{\prime}\left(R U^{\prime} R^{\prime} U\right) \times\left(U^{\prime} R\right)$
C2－46－Probability $=1 / 54$
$\mathbf{r}^{\prime} \mathbf{U}^{\prime}\left(\mathbf{r l}^{\prime} \mathbf{R}^{\prime} \mathbf{U}\right)\left(R \mathbf{U}^{\prime} \mathbf{R}^{\prime} \mathbf{U}\right) \mathbf{M} \mathbf{U r}$
$r^{\prime} U^{\prime}\left(r U^{\prime} R^{\prime} \cup\left(R \cup U^{\prime} R^{\prime} \cup\right)\left(R r^{\prime}\right) \cup r\right.$
$F\left(R \cup R^{\prime} U^{\prime}\right) R F^{\prime}\left(r \cup R^{\prime} \cup^{\prime}\right) r^{\prime}$
I4－56－Probability＝ $1 / 108$
$\mathbf{R} \mathbf{U}^{2} \mathbf{R}^{2} \mathbf{U}^{\prime}\left(R U^{\prime} R^{\prime} U^{2}\right)\left(\mathbf{F}^{2} \mathbf{U F}^{2}\right)$
$R^{\prime} U^{2} R^{21} \cup\left(R^{\prime} \cup R U^{21}\right) X^{\prime}\left(U^{\prime} R^{\prime} U\right)$
I3－ $\mathbf{5 5}$－ －Probability $=1 / 108$
（ $\mathbf{R}^{\prime} \mathbf{F R}$ ）（U $\left.\mathbf{R}^{\prime} \mathrm{F}^{\prime} R\right) \mathbf{y}^{\prime}\left(\mathbf{R} \mathbf{U}^{\prime} \mathbf{R}^{\prime}\right)$
K2－14－Probability＝ $1 / 54$
$\begin{array}{ll}R & \left(r^{\prime} U^{\prime} r\right)\left(R^{\prime} U^{\prime} R U\right)\left(r^{\prime} U r\right)\end{array}$
$Y^{2}\left(R^{\prime} F^{\prime} R\right)\left(L^{\prime} U^{\prime} L U\right)\left(R^{\prime} F R\right)$
$\left(L^{\prime} B^{\prime} L\right)\left(R^{\prime} U^{\prime} R U\right)\left(L^{\prime} B L\right)$
кз－15－Probability $=1 / 54$

F（RUR＇U＇）$F^{\prime} f\left(R U R^{\prime} U^{\prime}\right) f^{\prime}$
O2－2 - Probability $=1 / 54$
 $f\left(R \cup R^{\prime} U^{\prime}\right) f^{\prime} \cup R y\left(R \cup R^{\prime} U^{\prime}\right) F^{\prime} y^{\prime}$ 04－4－Probability $=1 / 54$
$\underset{\left(r^{\prime} U^{2} R U R U U\left(R^{2}\right) U^{2} R^{\prime} U^{\prime} R U^{\prime} r\right)}{M}$
o7－19－Probability＝ $1 / 54$
$\mathbf{M U}\left(R U R U^{\prime}\right) \mathbf{M}^{\mathbf{2}}$（URU＇r＇）
$\left(r^{\prime} R\right) \cup\left(R \cup R^{\prime} U^{\prime}\right)\left(r^{2} R^{2}\right)\left(U R U^{\prime} r^{\prime}\right)$
$\left(M^{\prime} U^{2} M^{\prime}\right) U^{2}\left(M^{\prime} \cup M\right) U^{2}\left(M U^{2} M\right)$
o8－20 - Probability $=1 / 216$

