How to Mentally Calculate the Day of the Week for Any Date

Adapted from http://www.quincunx.org/calendar/index.htm

- The Basic Steps - Example Date is July $13^{\text {th }}, 2004$

- The Tricky Part
- Remove multiples of $28(28,56,84)$ from the last 2 digits of the year (in this case none)
- Divide the resulting number by 4 and drop the decimal part ($4 \div 4=1$)
- If you don't want to mess with decimals, just use the multiple of 4 below the last 2 digits of the year and then divide by 4
- Add the resulting number to the number from the previous step ($4+1=5$)
- After calculating this you can remove multiples of 7
- Get the corresponding code for the month (=5)

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

6	2	2	5	0	3	5	1	4	6	2	4

- If it is a leap year AND the month is January or February, subtract 1 from the total
- Leap years are the years evenly divisible by 4 (unless it ends in 00 and is a multiple of 400)
- Get the corresponding code for the century $(=0)$

1700s 1800s 1900s 2000s 2100s 2200s

+5	+3	+1	+0	-2	-4

- Note the day (=13)
- You can remove multiples of 7 in order to keep the math simple
- Add all the resulting numbers together ($5+5+0+13=23$)
- Remove multiples of 7 until a number from 1-7 is left (23-21 = 2)
- The resulting number corresponds to the day of the week ($2=$ Tuesday)

Mon Tue Wed Thu Fri Sat Sun

1	2	3	4	5	6	0,7

- Other things to take into account

- This algorithm is only valid for the Gregorian calendar which began on September 14, 1752.
- If during the calculation you get 0 or negative numbers, just add seven until you get a number from 1-7.
- By subtracting multiples of 28 from the last two digits of the year the largest number you will have to work with will be 27
- You can subtract multiples of 7 to any of the resulting numbers to make them easier to work with
- You may want to add multiples of 7 to the month codes to make them easier to remember
- For example, August is the $8^{\text {th }}$ month and $1+7=8$
- Or Christmas is December $25^{\text {th }}$ and $4+21=25$
- Remember that when adding a quarter of the year onto itself, if the quarter of the year is not a whole number, simply ignore the decimals. Do not round up. Therefore $27 / 4=6.75=6$, and $2 / 4=$ $0.5=0$.

Year \# Minus 28x	Year \# Plus a 1/4	Year \# Minus 7s
27	33	5
26	32	4
25	31	3
24	30	2
23	28	0
22	27	6
21	26	5
20	25	4
19	23	2
18	22	1
17	21	0
16	20	6
15	18	4
14	17	3
13	15	2
12	13	1
11	12	6
10	11	5
9	10	4
8	7	3
7	6	1
6	5	0
5	3	6
4	2	5
3	1	3
2	0	2
1		0
0		

Examples

The thought process for a date such as 20/12/1967 should be as follows: (explanations are in parentheses)

67-56=11 (Take multiples of 28 from the year-84, 56 or 28)
$11+2=\mathbf{1 3}$ (Add a quarter of the nearest multiple of 4 below the number, in this case the nearest multiple is 8 , so a quarter of that is 2)

13-7 = 6 (Take away 7 or multiples of 7 . This leaves us the year code)
December $=\mathbf{4} \quad$ (The code for the month from the table above)
20-14 = 6 (Take away 7 or multiples of 7 from the day.)
$6+4+6=\mathbf{1 6}$ (Add the codes for the year, the month and the day)
$16+1=\mathbf{1 7}$ (Add 1 if the date is in the 1900s)
17-14 = $\mathbf{3} \quad$ (Take away 7 or multiples of 7)
$3=$ Wed \quad (The final number indicates day of the week)

For a date in 2000, 2001, 2002 or 2003, remember that the year code is simply the last digit, so for a date in any of these years, we already know the year code.

So, to work out a date in 2000, we forget the year code: for example 4th August 2000

August $=\mathbf{1} \quad$ (The code for the month)
$\mathbf{1 + 4 = 5} \quad$ (Add the codes for the month and the day)
5 = Friday $\quad($ The final number indicates day of the week)

