How to Mentally Calculate the Day of the Week for Any Date

Adapted from http://www.quincunx.org/calendar/index.htm

• The Basic Steps – Example Date is July 13th, 2004

- The Tricky Part
 - Remove multiples of 28 (28, 56, 84) from the last 2 digits of the year (in this case none)
 - Divide the resulting number by 4 and drop the decimal part $(4 \div 4 = 1)$
 - If you don't want to mess with decimals, just use the multiple of 4 below the last 2 digits of the year and then divide by 4
 - Add the resulting number to the number from the previous step (4 + 1 = 5)
 - After calculating this you can remove multiples of 7
- \circ Get the corresponding code for the month (=5)

- If it is a leap year AND the month is January or February, subtract 1 from the total
- Leap years are the years evenly divisible by 4 (unless it ends in 00 and is a multiple of 400)
- $\circ~$ Get the corresponding code for the century (=0)

1700s 1800s 1900s 2000s 2100s 2200s

	+5	+3	+1	+0	-2	-4
--	----	----	----	----	----	----

- Note the day (=13)
 - You can remove multiples of 7 in order to keep the math simple
- Add all the resulting numbers together (5 + 5 + 0 + 13 = 23)
- Remove multiples of 7 until a number from 1-7 is left (23 21 = 2)
- \circ The resulting number corresponds to the day of the week (2 = Tuesday)

Mon	Tue	Wed	Thu	Fri	Sat	Sun
1	2	3	4	5	6	0,7

Other things to take into account

- This algorithm is only valid for the Gregorian calendar which began on September 14, 1752.
- If during the calculation you get 0 or negative numbers, just add seven until you get a number from 1-7.
- $\circ~$ By subtracting multiples of 28 from the last two digits of the year the largest number you will have to work with will be 27
- You can subtract multiples of 7 to any of the resulting numbers to make them easier to work with
- You may want to add multiples of 7 to the month codes to make them easier to remember
 - For example, August is the 8^{th} month and 1 + 7 = 8
 - Or Christmas is December 25^{th} and 4 + 21 = 25
- Remember that when adding a quarter of the year onto itself, if the quarter of the year is not a whole number, simply ignore the decimals. Do not round up. Therefore 27/4 = 6.75 = 6, and 2/4 = 0.5 = 0.

Year #	Year #	Year #
Minus 28x	Plus a 1/4	Minus /s
27	33	5
26	32	4
25	31	3
24	30	2
23	28	0
22	27	6
21	26	5
20	25	4
19	23	2
18	22	1
17	21	0
16	20	6
15	18	4
14	17	3
13	16	2
12	15	1
11	13	6
10	12	5
9	11	4
8	10	3
7	8	1
6	7	0
5	6	6
4	5	5
3	3	3
2	2	2
1	1	1
0	0	0

Examples

3 = **Wed**

The thought process for a date such as 20/12/1967 should be as follows: (explanations are in parentheses)

67- 56 = 11	(Take multiples of 28 from the year - 84, 56 or 28)
11 + 2 = 13	(Add a quarter of the nearest multiple of 4 below the number, in this case the nearest multiple is 8, so a quarter of that is 2)
13 - 7 = 6	(Take away 7 or multiples of 7. This leaves us the year code)
December = 4	(The code for the month from the table above)
20 - 14 = 6	(Take away 7 or multiples of 7 from the day.)
6 + 4 + 6 = 16	(Add the codes for the year, the month and the day)
16+1= 17	(Add 1 if the date is in the 1900s)
17 - 14 = 3	(Take away 7 or multiples of 7)

For a date in 2000, 2001, 2002 or 2003, remember that the year code is simply the last digit, so for a date in any of these years, we already know the year code.

So, to work out a date in 2000, we forget the year code: for example 4th August 2000

(The final number indicates day of the week)

August = 1	(The code for the month)
1+4=5	(Add the codes for the month and the day)
5 = Friday	(The final number indicates day of the week)